POLYATOMIC IONS - Carbonate (CO₃⁻²), Bicarbonate (HCO₃⁻¹) - Phosphate (PO₄⁻³), Phosphite (PO₃⁻³) - Sulphate (SO₄⁻²), Sulphite (SO₃⁻²) - Nitrate (NO₃⁻¹), Nitrite (NO₂⁻¹) - Ammonium (NH₄⁺¹) - Hydroxide (OH⁻¹) **ACIDS** (They produce H⁺¹ ions when dissolved in water) - Hydrochloric Acid (HCI) - Nitric Acid (HNO₃), Nitrous Acid (HNO₂) - Sulphuric Acid (H₂SO₄), Sulphurous Acid (H₂SO₃) - Phosphoric Acid (H₃PO₄), Phosphorous Acid (H₃PO₃) - Carbonic Acid (H₂CO₃) ## **BASES/ALKALIS** NH_3/NH_4OH , Metal Oxides and Metal Hydroxides are all Bases. Bases that dissolve in water are alkalis – All $Gp1/NH_4^+$ Hydroxides are soluble and those lower down in GpII ($Ba(OH)_2$, $Sr(OH)_2$ & partially $Ca(OH)_2$) #### **SOLUBILITY OF SALTS** - All nitrate/Gp1 and NH₄ compounds are soluble - All sulphate salts are soluble except PbSO₄, BaSO₄ & partially CaSO₄ - All carbonate and phosphate salts are insoluble except Group 1 and NH₄⁺¹ salts - Group 1 and NH₄⁺¹ salts are all soluble - All chlorides/bromides/iodides are soluble except Ag⁺¹ Pb⁺² salts. - AgCl, PbCl₂ are white ppt soluble in dilute NH₃(aq) - AgBr, PbBr₂ are cream ppt soluble in concentrated NH₃(aq) - o AgI, PbI₂ are yellow ppt insoluble in NH₃(aq) ## **REACTIONS OF ACIDS/BASES** - Acid + Base -> Salt + water - Acid + Metal carbonate -> Salt + Water + CO₂ - Acid + Metal -> Salt + H₂ - Acid + NH₃ -> Ammonium Salt - Ammonium Salt + Base/Alkali -> Salt + Ammonia + Water - Metal Carbonate → Metal Oxide + CO₂ - Metal Nitrate → Metal Oxide + NO₂ + O₂ (For Metals other than Group1) - Metal Nitrate → Metal Nitrite + O₂ (For Group1 Metals) #### **PREPARATION OF SALTS** ## TITRATION: Soluble Reactants → soluble Products ## **PRECIPITATION** Soluble Reactants → Insoluble Products ## **EXCESS METHOD** Insoluble Reactants → Soluble or Insoluble Product ### **INDICATOR COLORS** # **Methyl Orange** - Red in Acid (below pH 4) - Orange/Yellow in Alkali (above pH 4) #### Phenolpthalein - Pink in Alkali (Above pH 8) - Colorless in Acid (Below pH 8) #### **Universal Indicator** - Strong Acid (Red), Weak Acid (Orange) - Weak Alkali (Blue), Strong Alkali (Purple) - Neutral (Green) #### **REACTIVITY SERIES/EASE OF DISCHARGE** (most reactive) K, Na, Ca, Mg, Al, (C), Zn, Fe, Sn, Pb, (H) Cu, Ag, Au, Pt (least reactive) ## **EASE OF DISCHARGE OF ANIONS** I⁻¹, Br⁻¹, OH⁻¹, <u>Cl⁻¹</u>, SO₄⁻², NO₃⁻¹ etc (underlined ions get discharged when present in concentrated amount) #### **EXTRACTION OF IRON** Iron Ore (Haematite) – Fe_2O_3 is reduced with Coke (Carbon) in blast furnace. - Fe₂O₃ + C -> Fe + CO₂ - Fe₂O₃ + CO -> Fe + CO₂ Calcium Carbonate is added to the blast furnace to get rid of sand SiO₂ - CaCO₃ -> CaO + CO₂ (decomposes due to heat) - CaO + SiO₂ -> CaSiO₃ (which forms slag) Heat is produced in blast furnace when Coke (Carbon) combusts in hot air. ## **EXTRACTION OF ALUMINIUM** Bauxite is Al_2O_3 . Al_2O_3 is amphoteric and is dissolved in NaOH. Other metal oxides which are basic don't dissolve and are filtered out. Cryolite Na₃AlF₆ is added to reduce melting point. Graphite anode burns away (C+O₂->CO₂) Cathode: $4Al^{+3} + 12e \rightarrow 4Al$ Anode: $60^{-2} \rightarrow 30_2 + 12e$ ## **CONTACT PROCESS** $S + O_2 -> SO_2$ $$2SO_2 + O_2 \leftrightarrow 2SO_3$$ Conditions for the reversible reaction above: V_2O_5 catalyst, 450^0 C, 1-2 atm pressure Contact: 0323 509 4443 #### www.fahadsacademy.com $SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$ (oleum) Oleum diluted in water to get H_2SO_4 $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$ #### **HABER PROCESS** $N_2 + 3H_2 <-> 2NH_3$ Conditions: 200 atm, 450°C, Iron Catalyst **<u>DI-ATOMIC MOLECULES:</u>** H_2 , N_2 , O_2 , & Group VII (F_2 , Cl_2 , Br_2 , I_2) #### ACIDIC/BASIC/NEUTRAL GASES Acidic: CO₂, P₂O₅, NO₂, SO₂, SO₃ Neutral: H₂, O₂, N₂, CO, NO Basic: NH₃ Amphoteric: ZnO, Al₂O₃, PbO OXIDATION STATES (OS) - Free element is "0" e.g. Na, O₂, I₂ etc Elements present in compounds - Group 1 is +1, Group 2 is +2, Group 3 is +3, - Transition Metals have Variable OS. - Oxygen is -2 - Hydrogen is +1 - Group 7 is -1 except when bonded to Oxygen #### **OXIDIZING/REDUCING AGENTS** Strong Oxidizing Agents: - Potassium di Chromate K₂Cr₂O₇ (orange). Turns green when reduced. - Potassium Mangnate KMnO₄ (purple). Turns colorless when reduced. ## **Strong Reducing Agents:** - SO₂ is a strong reducing agent, Gets oxidized to SO₃ (SO₂ is a bleaching Agent, and a Food Preservative) - I⁻¹ iodide is a strong reducing agents. Gets oxidized to I₂ iodine. ## **ORGANIC CHEMISTRY** - Free Radical Substitution of Alkanes (UV light required) CH₄ + Cl₂ → CH₃Cl + HCl - Cracking of Alkanes (400°C, Al₂O₃) - Bromination of Alkenes (alkenes decolourize bromine) CH₂=CH₂ + Br₂ → CH₂BrCH₂Br - Hydration of Alkenes (H₃PO₄ catalyst, 300°C, 60 atm pressure): Alcohol is formed - Hydrogenation of Alkenes (Nickel catalyst, 200°C) (Vegetable Oil to Margarine) - Alcohols get oxidized to Carboxylic Acids - Reagents: Reflux + Oxidizing Agent (K₂Cr₂O₇ Orange to Green, or KMnO₄ Purple to Colorless) - Alcohol + Carboxylic Acid → Ester + H₂O - Reflux and Few drops of concentrated H₂SO₄ - Esters are Sweet smelling compounds - Addition Polymer (Monomers(Alkene) at high T°C and Pressure) e.g. Polyethene, Plastics - Condensation Polymer - Polyamide (Nylon): (di)Carboxylic Acid + (di)Ammine → Polyamide(e.g. Nylon) + H₂O - Polyamide (Proteins): Amino Acid + Amino Acid → Polyamide + H₂O - Polyester: (di)Carboxylic Acid + (di)Alcohol → Polyester (e.g. Fats, Terylene) + H₂O - Glucose + Glucose \rightarrow Starch + H₂O ## **COLOR OF COMPOUNDS** CuO (black), PbO (yellow), Group1, 2 and 3 are generally white. Anhydrous CuSO₄ is white. Hydrous CuSO₄.xH₂O is blue. CuSO₄(aq) is blue solution. Fe₂O₃ is red. Cl₂ is greenish gas, Br₂ is red brown liquid, I₂ is blue black solid. AgCl/PbCl₂ is white, AgBr/PbBr₂ is cream, Agl/PbI₂ is yellow. Hydrous CoCl₂ is pink, Anhydrous CoCl₂ is blue. ## **SOME NAMES OF COMPOUNDS** Lime - Ca(OH)₂, Limestone - CaCO₃ ## **TEST OF CATIONS** - NH₄⁺¹: Ammonia gas released with NaOH (aq) - Fe⁺²: insoluble green ppt with both excess NaOH (aq) and NH₃(aq) - Fe⁺³: insoluble red/brown ppt with both excess NaOH (aq) and NH₃(aq) - Ca⁺²: white ppt with NaOH (aq) insoluble in excess. No or slight ppt with NH₃ (aq) - Cu⁺²: Pale blue ppt with NaOH (aq) insoluble in excess. Pale blue ppt with NH₃ (aq) soluble in excess, giving a deep blue solution - Al⁺³: White ppt with both NaOH (aq) and NH₃ (aq) but only soluble in excess NaOH (aq) - Zn⁺²: White ppt, soluble in excess with both NaOH (aq) and NH₃(aq). # **TEST FOR ANIONS** - **CO**₃⁻²: CO₂ gas produced (effervescence) with aqueous Acid - **CI**⁻¹: Acidify with dilute aqueous nitric acid and add with Ag⁺¹ or Pb⁺². White ppt produced. - I⁻¹: Acidify with dilute aqueous nitric acid and add with Ag⁺¹ or Pb⁺². Yellow ppt produced. - NO₃⁻¹: Add Aluminium foil/powder + NaOH and heat. Ammonia gas is given off - SO₄-2: Acidify with nitric acid and add Ba+2. White ppt produced ## **TEST FOR GASES** - CO₂: Turns lime water (Ca(OH)₂) milky - NH₃: Turns damp red litmus paper blue - H₂: Pop sound produced when ignited - O₂: Relights a glowing splint - Cl₂: Bleaches damp litmus paper - SO₂: Turns acidified potassium dichromate (VI) from orange to green Contact: 0323 509 4443